Polymide Aerogel as Wire Insulation

Completed Technology Project (2015 - 2018)

Project Introduction

Evaluate at least five polyimide aerogel formulations for coating cables and down select for optimization study.

Anticipated Benefits

NASA Funded: Wires with aerogel insulation can provide significant mass savings for aircraft and spacecraft. NASA Unfunded: Wires with aerogel insulation can provide significant mass savings for aircraft and spacecraft. Commercial: Wires with aerogel insulation can provide significant mass savings for aircraft and spacecraft.

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
☆Glenn Research	Lead	NASA	Cleveland,
Center(GRC)	Organization	Center	Ohio

Primary U.S. Work Locations
Ohio

Polymide Aerogel as Wire Insulation

Table of Contents

Project Introduction	
Anticipated Benefits	
Primary U.S. Work Locations	
and Key Partners	
Organizational Responsibility	
Project Transitions	
Project Website:	
Project Management	
Technology Maturity (TRL)	
Target Destination	

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Center / Facility:

Glenn Research Center (GRC)

Responsible Program:

Game Changing Development

Game Changing Development

Polymide Aerogel as Wire Insulation

Completed Technology Project (2015 - 2018)

Project Transitions

October 2015: Project Start

January 2018: Closed out

Closeout Summary: Demonstrated the ability to coat 15 m of carbon nanotube wire in a continuous process (could have coated much longer wire but stopped t he process). Increased the technology from TRL2 to TRL3. The objective of this project was to develop and mature high payoff nanotechnologies for future NAS A mission with a focus on technologies that could lead to significant reductions i n vehicle weight and improvements in performance. The project successfully developed high strength carbon nanotube composites and, for the first time, demon strated them in a load-bearing component (composite overwrap pressure vesse I) that was flight tested on a sounding rocket as part of a cold-gas thruster syste m. The project also developed polyimide aerogel insulation for electrical wiring that is 90% lighter than conventional polymer insulation and carbon nanotube and metal nanolattice cores for composite sandwich structures with properties that exceeded those of conventional aluminum honeycomb cores at the same density.

Project Website:

https://www.nasa.gov/directorates/spacetech/home/index.html

Project Management

Program Director:

Mary J Werkheiser

Program Manager:

Gary F Meyering

Principal Investigator:

Azlin Biaggi-labiosa

Technology Maturity (TRL)

Target Destination

Foundational Knowledge

